Hardware-Software Bipartitioning for Dynamically
Reconfigurable Systems:

Daler N. Rakhmatov and Sarma B.K. Vrudhula
Center for Low Power Electronics
ECE Department, University of Arizona
Tucson, AZ 85721
daler/sarma@ece.arizona.edu

ABSTRACT

The main unique feature of dynamically reconfigurable systems
is the ability to time-share the same reconfigurable hardware re-
sources, However, the energy-delay cost associated with reconfig-
uration must be accounted for during hardware-software partition-
ing. We propose a method for mapping nodes of an application
control flow graph either 1o software or reconfigurable hardware,
explicitly targeting murimization of the energy-delay cost due to
both computation and configuration. The addressed problems are
energy-delay product minimization, delay-constrained energy min-
imization, and energy-constrained delay minimization. We show
how these problems can be tackled by using network flow tech-
niques, after ransforming the original control flow graph into an
equivalent network. If there are no constraiats, as in the case of
the energy-delay preduct minimization, we are able 10 generate an
optimai solution in polynomial time.

Keywords: hardware-software partitioning, reconfigurable sys-
tems, network Aows.

1. INTRODUCTION

To achieve greater flexibility, reduced costs and longer product
life, the trend is to use configurable or akierable components in the
design of embedded systems. To respond to changes in an appli-
cation, such a systemn is reconfigured rather than redesigned and
rebuilt. Tight coupling of the hardware and software in reconfig-
urable embedded systems requires extensive automated support for
efficient hardware-software mapping of an application, with an ex-
piicit account for a new penalty metric associated with reconfigu-
ration. [n this paper we address the problem of hardware-software
bipartitioning, which in our case is synonymous with hardware-
software mapping of an application.

“This work was carried out at the National Science Foundation’s
State/Industry/University Cooperative Research Centers” (NSF-
SAUCRC) Center for Low Power Elecronics (CLPE). CLPE is
supported by the NSF (Grant EEC-9523338), the State of Arizona,
and a consortium of companies from the microelectronics industry
(visit the CLPE web site http://clpe.ece.arizona.edu).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CODES'02, May 6-8, 2002, Estes Park, Colorado, USA.

Copyright 2002 ACM 1-58113-542-4/02/0005...85.00.

The assumed target architecture of 2 dynamically reconfigurable
digital processor includes three key components: a software unit
(a microprocessor), a dynamic hardware unit (a reprogrammable
logic device), and a shared memory vnit {communication link be-
tween software and hardware). The software can directly configure
the hardware, which is partially reconfigurable. Partial reconfigura-
tion allows for a selective change of hardware segments of arbitrary
size at an arbitrary location, without disrupting the operation of the
rest of the hardware space. Such a capability greatly reduces re-
configuration time and energy consumption, because the hardware
updates are highly localized.

An application is represented by a control-flow graph (CFG), and
our goal is to assign each graph node, or basic block, to either the
hardware or the software. Usually, the hardware implementation
is more energy-delay efficient than the software implementation;
however, the former invokes a hardware reconfiguration penalty in
terins of both energy and delay. In this paper, we address three
types of problems: (1) energy-delay product minimszation, (2) en-
ergy minirnization under the delay consuaint, and (3) delay mini-
mization under the energy constraint. We show how to tackle these
problems by using network flow techniques. The unconstrained
minimization is solved optimally in polynomial time, and methods
are presented for systematically exploring near optimal solutions
for the constrained problems.

Although the close link between graph bipartitioning and net-
waork flows is well known, the applicability of network flows to our
case is not obvious. Our cost function involve costs of all nodes and
ail edges in the CFG, and not just the edges in the cut-set separating
software-mapped nodes and hardware-mapped nodes. Specifically,
the cost of a node depends whether it is in software or in hardware,
and the cost of an edge depends whether its origin node is in soft-
ware or in hardware and whether its destination node is in software
or in hardware.

2. PROBLEM DESCRIPTION

Qur approach directly targets energy-deiay minimization in the
dynamically reconfigurable computing environment. The key as-
sumptions are as follows: (1) the target architecture consists of a
microprocessor core and a dynamically reconfigurable logic core,
communicating through a shared memory core: (2) an application
is represented by a contro! flow graph; (3) hardware-software bi-
partitioning 1s performed at the basic block level; (4) basic blocks
are executed sequentially. in accordance with the control flow; (5)
reconfiguration events take place during control transfers; {6) par-
tial reconfigurability is utilized 10 reduce the amount of configura-
tion; (7) the energy-delay penalties due (o both computation and
reconfiguration are taken into account; (8} the application delay is

145

defined as a weighted sum of computation delays of all the basic
blocks and reconfiguration delays of all control transfers: (9) the
application energy is defined as 2 weighted sum of computation en-
ergies of all the basic blocks and the reconfiguration energies of all
control transfers; (10} the weights mentioned in (8) and (9) (for en-
ergy or delay) are execution frequencies, which are obtained from
application profiling data.

Let G(V,E) denote the control flow graph subject to hardware-
software bipartitioning. Nodes in ¥ correspond to the basic blocks
and the edges in E represent control transfers between the blocks.
Associated with each node i € V is a partitton variable defined as
x;i =0, i~ sofrware and x; = 1, { = hardware.

Each node i € V is associated with the cost cp{i) and the weight
wo(#), if { is mapped to software, as well as the cost ¢ {i) and the
weight wy{i}, if { is mapped to hardware. Each edge (i,;) € E
is associated with one of the following four costs and one of the
following four weights, respectively, depending on the mapping of
the nodes i and j:

coolf, j) and woo (1, 7). if x%; = 11
cor{t,) and woy (4,), ifi,'x_,' =1
cyold,) and wyp(i, 7). if x%; = I3
cn(r, 7Y and wyy (i, 7}, if xxy = L.

The cost/weight can be either the energy or the delay or the
energy-delay product of a node/edge. weighted by its execution
frequency, We make two assumptions about the edge costs and
weights. First, transferring control from a hardware block to a soft-
ware block is more expensive than transferring control from a sofi-
“ware block to a software block. This is realistic since a hardware-
te-software transition may cause extra data traffic. Second, trans-
ferring control from a software block to a hardware block is more
expensive than transferring control from a hardware block to a
hardware block. This is also realistic since a hardware-to-hardware
transition may be less expensive due to partial reconfigurability.
These two assumptions are restated below:

<ol /) > cooli, j) and wig(i, j) 2> wooli, /) "
co1{i, J) 2 ci (i, j) and woi(f,) 2 win i, j)-

We define the objective function F and the constraint function G,
respectively, as follows:

F=2f)+ X f(i)) and G=§8(1‘)+ 2 &ih) @

i€V (4.))eE (1,))eE

where

Ji) = xie0 (i) +Tiep(d),

2{1) = xiwy (i) + Ziwo(i),

S, J) = xpxgen (i, §) + xx010(i, J) + oo (7, §) + T jcooli, 7).
(i J) = xpcywiy (4,) +xZjwiold,) -+ Xexwon (i,) +ZiZwoo i, 7).

In the unconstrained hardware-software bipartitioning problem,
the task is to find an assignment of each partitioning variable x;,
such that the sum of costs over all nodes and all edges (the cost
F of a bipartition) is minimized. The energy-delay product mini-
mization is the unconstrained bipartitioning problem, with the cost
defined in terms of the energy-delay product.

The constrained hardware-software bipartitioning problem re-
quires finding an assignment of each partitioning variable x; such
that the objective function F is minimized, and the sum of weights
over all nodes and all edges (zhe weight G of a bipartivion) does
not exceed some given budget B. The delay-constrained energy
minimization or energy-constrained delay minimization is the con-
strained bipastitioning problem with the cost and the weight defined
in terms of energy or delay, accordingly.

3. RELATED WORK

In this section we briefly justify uniqueness of our problem and
contribution of our approach, compared to previously published
research in two related areas: circuit partitioning and hardware-
software cosynthesis.

Circuit Partitioning: The circuit bipartition cost is usually de-
fined as the number of edges crossing the cut that divides a circuit
into two parts. Given an undirected graph with |V| vertices, it is
possible to find its optimal unconstrained bipartition in polynomial
time by applying a max-flow algorithm at most |[V| — 1 times [1).
However, once we require the two circuit parts be of approximately
equal size, the problem becomes hard, and we have to resort to
heuristics [2, 3]. Note that circuit part size constraints are com-
pletely different from our constraint, while circuit bipartitioning
cost is a special case of our cost function.

In [4], the authors applied network flows to circuit partitioning
for reconfigurable FPGAs. The input to the problem is a directed
acyclic graph (DAG), and the output is 2 graph partition such that
graph parts can be sequenced in time without violating node de-
pendencies, part sizes are balanced, and the number of cut edges is
minimized. Even though our approach is similar (iterative applica-
tion of a max-flow algorithm), our problem is different: we do not
have precedence and balancing constraints for a control flow graph,
and our cost function is not limited to cut edges.

Hardware-Software Partitioning: Application mapping can be
performed either (1) at the task level (coarse-grain mapping), or (2)
at the instruction cluster level (fine-grain mapping). The nature of
the mapping problem is determined by the models of a system and
an application. In [5, 6, 7] the focus is on synthesizing the archi-
tecture itself during coarse-grain partitioning. In [8, 9] the system
consists of more than two processing units. Consequently, the map-
ping problem is different when compared to our case (e.g. schedul-
ing becomes a part of it). The architecture model in [10] is similar
10 ours; however, the authors consider paraliel task scheduling in
addition to hardware-software assignment.

In [11, 12], the system architecture consists of a general purpose
processor (software) coupled with a custorn hardware chip, and the
goal is to map progran blocks, executed sequentially, to either soft-
ware or hardware. Software-to-hardware and hardware-to-software
communication delays as well as execution delays of software parts
and hardware .parts are taken into account, and the total hardware
area is constrained. However, the extended Kemighan-Lin heuristic
in [12] does not show us how 1o solve the unconstrained problem
exactly, and the dynamic programming algorithm in [11] does not
account for software-to-software and hardware-to-hardware com-
munication, present in our case. Another work closely related to
ours is the NIMBLE compiler [13]. It maps a set of candidate loops
(kernels), extracted from an application code, onto the micropro-
cessor core and the programmable logic core. The kernel profiling
data (software execution tirme, hardware execution time, block exe-
cution frequencies, and hardware area) as well as the configuration
time are incorporated into a giobal cost function that drives the par-
titionter toward the smatlest total execution delay of all loops. Opti-
mality of the solution is not guaranteed even though no constraints
are included (e.g. total energy of all lcops).

Qur Contribution: For sequentially executed control flow
graphs, we generalized the unconstrained bipartitioning problern
so that the cost function accounts for computation costs of software
and hardware blocks, as well as software-to-software, software-to-
hardware, hardware-to-software, and hardware-to-hardware com-
munication costs. Here, our contribution is to show how a CFG
with node and edge costs can be transformed into a network, so
that a minimum cut in the network corresponds to an optimal bi-

146

partition of the CFG.

For the constrained version, we define a constraint {weight) func-
tion similar to the cost function. Cur goal is to map each node o
either software or hardware (thus, changing costs and weights of
nodes and edges) so that the gverall cost is minimized and the over-
al! weight does not exceed the budget. Our heuristic method is
also based on network flows. We are able 1o systematically explore
a polynomially bounded set of good soiutions for the conswrained
problems.

Remark: Basic blocks in application control flow graphs ¢an
be of any granularity, provided that external control wansfers take
place only at the end of a basic block. At the lowest level, a ba-
sic block is comprised of primitive operations such as additions,
multiplications, memory loads, etc., with (un)conditional branches
allowed only at the end of the block. At the highest level, basic
blocks are functions/procedures.

4. PROPOSED SOLUTION

In this section we show how the unconstrained and constrained
bipartitioning problem can be solved by using nerwork flows. First.
the original CFG G(V, E) is transformed into a network G(V,£).
as follows: (1) two additional vertices, s (source) and z (sink) are
added to V obtain ¥, (2) in addition to edges in E, E will have
edges (5,0 if (i,7) € E and (j,i) ¢ E, (3) for all i € V, edges (s,i)
and (i,) are added to E.

Each edge in £ is assigned cost and weight capacities & and &g,
respectively, as follows:

er(s) = al+Zynesen{ii,
er(ie) = coll) +Z(jeec00li),
il = wi(D+Zneewn(i:,
&g(i,r) = woli}+Z(jneewooli:i) 3)
&r(6) = leal,)= (N5 € E]
+[C|0(j)i) —C'(X](J‘,I)]f(},l) € E]v
&Gl)y = woali, 1—wnli, DL) € E)

+[Wm(j, i) —Wm(j,f)][(j,f) € E]

CFG2Network (V. E)
V= VU{S,I‘}, Sy =0, §;=0
FORallieV
Sv=$%U {(s,i),(i,!)}
cp(s,) =1 {i). (i1} = cofi)
Ea(s, 0} =wili), Eglit) = woli)
FORall (i,/) € E
er(s) = er(s iy venli), & (it} = érli) +con(is J)
(s, J) —CC(S D+wa(ii), &2 =ec(j1) +wooli,j)
IF {(i.4).(G,0)} ¢ Se
Sg = St U402, (0}
erli, i) = coli N —en (i, T Und) = c0li,) — ool)
Eic(' H=woi{i,) =wir (i, 7). Cclh,i) = wiolt, j} —wooli,)

Er(i,) = & (i fy+eon (i,) —en (i, 4)
epl i) = () + croli, 7} = coo(i, 5)
&ali,j) = &c(§,j) + wor (i, 7} ~ wu (i, 7)
¢l i) = &a{j,i) +wioli, 1) — wooli, j)
E=85/USk
RETURN (V,£)

Figure 1: Network Construction.

Figure I shows the details of network construction. Sy denotes
the set of all edges in £ that originate from s or terinate at . Edges
in Sy will be referred to as terrninal edges. Sg denotes the set of all
other arcs in £. Figure 4 shows an example of a control flow graph
and the corresponding network.

Due to the assumption given by Equation (1}, &7{i,j} and
£(i, /) are nonnegative and can indeed be interpreted as capaci-
ties of the edge {/, /). We consider only (s,t)-cuts, i.e., culs that
separate 5 and ¢ in (V,E) and partition the node set ¥ into two
sets, denoted by S (a set containing) and T (a set containing 7).
An example of such (s,r)-cut is shown in Figure 4. Associated
with each node and a given (s,1)-cut is a cut variable y;, such that
yi =0if node i € 5, otherwise y; = 1.

A cut is associated with two capacities: one, denoted by C, is
expressed in terms of the cost capacities, and the other, denoted by
Cg, is expressed in terms of the weight capacities.

Cr = Zipet)ies, jer 6r(i0) =2 pes Jivi@r (i J)
G = E(E,j)EE | i€S, jer‘-'G(i,J) =Z(i,j)ei,§r’)’156(isj)

The following theorem relates our original cbjective function F
to Cr and our original constraint function G to Cg.

“

THEOREM 1. An (5,1)-cut in G(V,E) identifies a bipartition in
G. and the cut capaciries Cr and Cg are equal 1o the cost F and
the weight G of the bipartition, respectively.

4.1 Unconstrained Bipartitioning Algorithm

In the unconstrained bipartitioning problem we want to mini-
mize the cost function F without any restrictions on the constraint
function G. To solve the unconstrained bipartitioning problem, we
first construct the network from the control flow graph, as described
above. Then, using a standard max-flow algorithm, we find a max-
imum flow ¢, and identify the corresponding cut with the mini-
mum capacity Cr = Omar- Once the cut is known, a 0-1 assignment
of the cut variables is straightforward. Upon this assignment, for
each node 4, except for s and 1, we set x; = y;.

UnconstrainedBipartitioningProcedure (V, £)
(V,E} = CFG2Network(V,E)
E = SaurateNetwork(V ,E}, CUT = FindMinCut{V ,E)
FORall (i, j) eCUT
=0 yj= 1
FORalligV

A=V
RETURN {x; | i€ V}

Figure 2: Unconstrained Bipartitioning Algorithm.

Figure 2 shows the details of the unconstrained bipartitioning
algorithm. SarurateNerwork(V ,E) is used to saturate the network,
and FindMinCut(V, E) is used to identify the corresponding cut.

4.2 Constrained Bipartitioning Algorithms
In the constrained bipartitioning problem, we want 1o minimize
the objective function F with a guarantee that the constraint func-
tion G does not exceed the budget B. A brute-force sotution would
be to consider all 21V possible mappings x; — {0,1} Vi € V, iden-
tify those that satisfy the weight constraint, and then among them
sefect the one with the minimum cost. Such an approach is very
expensive computationally. We propose two iterative methods that
find a good solution in polynomial time: however, optimality is not
guaranteed. The first method is cost-driven, .. the objective func-
tion F is systematically increased, starting from the minimum pos-
sible value, until either (1} the budget has been met, or (2) the num-
ber of iterations has exceeded a certain threshold. In this case, it is
guaranteed thai the minimum cost bipartition, which may or may
not satisfy the constraint, will be considered. The second method
is weight-driven, i.e. the objective function G is systematically in-
creased, starting from the minimum possible value, until (1) the

147

budget can no longer be met, or (2} the number of iterations has
exceeded a centain threshold. In this case, it is guaranteed that a
feasible solution, if exists, will be considered, e.g. the minimum
weight bipartition meets the budget; otherwise, no feasible solu-
tion exists. We advise to run both cost-driven and weight-driven
algorithms in order to find a feasible solution of a good cost.
Cost-Driven Constrained Bipartitioning: Afier we construct
and saturate the network, we find the corresponding min-cut CUT
with the minimum cost capacity Cr = @maqr. The cost and the
weight of thes initial solution are F = Cr and G = C, respectively.
If G > B, then at the next iteration we must find an alternative cut
NEW with the lower weight capacity. (The cost capacity of such
a cut may exceed the flow value &) To find NEW, we need to
increase the cost capacity of some edges. Such selected edges must
be excluded from alternative cuts of interest to maintain the equal-
ity berween the objective function F and the cost capacity Cr of a
cut. To achieve this, the selected cost capacities are set to infinity.
Note that any (s,¢)-cut in the network contains exactly |V| -2 = [V|
terminal edges (the edges with an endpoint at either the source or
the sink) from the set Sy. We allow only terminal edges from Sy o
be disabled {i.e. assigned to infinite cost capacity). Once as many
as |V| terminal edges have been disabled, there will remain only
one cut not containing any of such edges (i.e. a cut with finite Cr).
By disabling an additional terminal edge per iteration, we will need
only |V| iterations, thus ensuring the polynomial time complexity.
At each iteration, for a given CUT, we consider is terminal
edges one by one. For each selected terminal edge in CUT, we
set its cost capacity to infinity and saturate the network to find an
alternative min-cut NEW . Before the next terminal edge from CUT
is considered, we restore the original cost capacity of the currently
excluded terminal edge. Thus, at a given iteration the number of
disabled terminal edges remains the same. After each of V| ter-
minal edges of CUT are individually considered, we let variable
LOCAL hold the best min-cut among those found during the current
iteration, and variable GLOBAL hold the best min-cut among all the
iterations completed. For the next iteration, we setCUT = LOCAL,
and restore the network that has LOCAL as its min-cut, Note that
in this network, the number of disabled terminal edges is equal to
the number of iterations completed. Once NEW is such that the
constraint is satisfied, the local and the global solutions become the
same, i.e. GLOBAL = LOCAL. There is no need for another itera-
tion: we can only improve our solution during the current iteration.

THEOREM 2. Let Z,, denote the set of terminal edges with the
infinite cost capaciry. If another terminal edge is added 10 Ze., the
cost of a new min-cut will not improve,

Thus, the iterative search terminates, once either (1) a feasible
solution is found, or (2) |V| iterations have been performed. Note
that we have systematically examined only O(|V|*) cuts in the net-
work. Figure 3 provides further details on the cost-driven algo-
rithm, called ConstrainedBipartitioning Procedure(-).

Weight-Driven Constrained Bipartitioning: It is possible that
none of the cuts considered by the cost-driven method has met the
budget, i.e. we do not have a feasible solution. Therefore, running
the weight-driven algorithm is necessary to guarantee that a feasible
solution, if exists, is found. Figure 3 provides details on the weight-
driven algorithm. cafled ConstrainedBipartitioning Procedure2(-).
Saturating the network with respect to the weight capacities on
edges is performed by SaturareNerwork2(-}.

!Note that B; ez & (i,) is a trivial upper bound on flows in the
cost-driven method. We let this sum serve as <o, in this case.

To improve the cost of the minimum-weight solution, we use the
same searching idea as in the cost-driven method.2 The weight-
driven algorithm terminates once either the number of iteration ex-
ceeds |V|, or the maximurm flow at the current iteration exceeds
the budget (next iterations will produce even greater flows, i.e. no
ather feasible solutions will be found). The output is the best-cost
feasible solution found among O(|V{?) cuts considered.

5. ILLUSTRATIVE EXAMPLE

As an illustrative example, we take a control flow graph shown
in Figure 4. It is the IDCT subroutine of the DIPEG program (de-
compressing JPEG file into an image} compiled for the C166/ST10
microprocessor [14]. Figure 4 also shows the number of memory
access, ALU, and muluiply instructions per block. We assume that
(1) software {SW) and hardware (HW) operate at the same clock
frequency with no pipelining; (2) one memory access takes 2 cycles
and consumes 4 energy units, regardless whether it is issued from
SW or HW; (3) one ALU operation takes 1 cycle in both SW and
HW while consuming 2 energy units in SW and 3 energy units in
HW: (4) one multiplication takes 4 cycles in SW and | cycle in HW
while consuming 8 energy units in SW and 10 energy units in HW;
(5) a single SW-10-SW control transfer takes | cycle and consumes
1 energy unit; (6) a single SW-to-HW control transfer takes 10 cy-
cles and consumes 20 energy umts; (7) a single HW-to-SW takes 2
cycles and consumes 4 energy unit; (8) a single HW-to-HW control
transfer takes | cycle and consumes 1 energy unit; (9) the execution
frequency for biocks B0, B2, B4, and B9 is I, for blocks B5 and B8
is 64, for blocks B6 and B7 is 32 (50% probability), and for blocks
(self-loops) Bl and B3 is 8; (10) the execution frequency for edges
(BO,B1). (B1,B2), (B2,B3), (B3,B84), (84,B5), and (B§,B9) is 1,
for edges {B5,B6), (B6,58), (B5,B7). and (B7,B8) is 32, and for
edge (B8,B5} is 64. Under these assumptions, the energy-delay
specifications for nodes and edges are presented in Table 1.

Node Energy Delay Chuldren
& & | & 5
BO 36 38 | 18 18 Bl
B1 2672 3538 [1336 952 B2
B2 2 311 1 B3
B3 2592 3392 | 1296 912 B4
B4 E] 62 2 BS
BS 384 448 | 192 192 | B6, BY
B6& 64 96 | 32 32 Bg
B7 64 96 | 32 32 B8
B% 896 1216 | 448 448 | B5,B9
BY 30 3t 15 15 -
i Edge | Energy Delay
o Eal Ewo & | 8o B & Bn
(BO.BL) [1 20 4 1]1 10 2 1
(B1.B2) 1 20 4 i 1 10 2 1
{B2.B3) 1 20 4 1 1 10 2 1
(B3.B4) 1 20 4 [] 1 10 2 1
(B4.BS) | 1 20 4 111 10 2 1
(B3.B&) | 32 640 128 32| 3 320 64 32
(B5,B7) | 32 640 128 32 [32 320 64 32
(B6.B3) | 32 640 128 32] 32 320 [32
(B7.B8) | 33 640 128 32| 32 320 64 32
(B8.B5) | 64 1280 256 64 | o4 640 128 64
(BS.B% [1 20 4 1 1 10 2 1

Table 1: IDCT Energy-Delay Specifications.

We consider three choices for the bipartitioning cost (energy, de-
lay, and energy-delay product) and two choices for the bipartition-

2Note that E(;,j)eéfc(i.j) is a trivial upper bound on flows in the
weight-driven method. We let this sum serve as o=, in this case.

148

ConstrainedBipartitioningProcedure (V,E, B)
(V,E) = CFG2Network(V, E) ~
E = SaturateNetwork(V \E), CUT = FindMinCut(V ,E)
F =¥ necor CFlhI), G= X jecut €, 7}
IFG>8B

Fiobat = F. Ggiobat =G, GLOBAL=CUT, LOCAL=CUT
Ejoceat = E, teration=1, found = FALSE
‘WHILE found = FALSE
Ecopy = SaveNetworkSiate(E}, Fiocat =0, Gioer =
FOR each (i, j) € CUT | {i =5 OR j =1}
er(hJ) = Zyepyer EF(%,3)
E = SaturateNetwork(V \E), NEW = FindMinCu(V E)
Fnew = Zi jjenew EF (6, j}. Gnew = Ly penew ol)
found = FALSE
TIF Fiocat > Frew
Fioral = Frew. Grocat = Gnm_: LOCAL = NEW
Ejoei = SaveNetworkStare(E)
IF Eg!aba.! > Fnew OR Gnrw < B
Feiobat = Frewr Ggiopal = Grew, GLOBAL = NEW
IFG,w <8
Fiocal = Fytobatr Gioeat = Gylobar, LOCAL = GLOBAL
Eiocat = SaveNetworkSrare(E), found = TRUE
ELSE
IF Fyjopat > Fxew AND Grew < B
th,m = Frew- G![,,M = Gpew. GLOBAL=NEW
Fiocat = Fyiobars Ghrocat = Gytobar, LOCAL = GLOBAL
Etocat = SaveNetworkState(E)
E = RestoreNetworkState{Ecop)
CUT = LOCAL, E = Ejpery, iteration = iteration+ 1
IF iteration > |V| BREAK
CUT = GLOBAL
FORal: (i,) € CUT
=0 y=1
FORallieV
X =Yi

RETURN {x | i ¥}

ConstrainedBipartitioningProcedure2 (V, £, B)
V.E) = CFG2Network{V,E)
= Samraleﬂerwark_"(‘i.’,f), CUr = Fl'ndMinCm(\-/ ,E)
F =L necur F(B). G = Ty pecur C6(h,)
IFG<B
FE’M =F, Ggopat =G, GLOBAL =CUT, LOCAL=CUT
Ecat = E, iteration =1
WHILE iteration < |V
: .EWM = SaveNerworkState(E), Fiocat =%, Gloca = %
FOR each (i, /) € CUT | {i =5 OR j =1}
(i) = z(x,)»]eﬂ &6lx,y)
E = SaturateNetwork2{V \E). NEW = FindMinCut(V E)
Foew = X (i, penew €r (1, j} Gnew = Zi jenew E{i, J)
IF Fioooi > Faew:
Fioeal = Faews Glocal = Grew, LOCAL =NEW
Ejpear = SaveNetworkSiate(£)
IF Fytapat > Frew AND Gppw < B
Frtobat = Faew. Giobat = Grew. GLOBAL = NEW
Fiocat = Fyabats Giocat = Gylobat, LOCAL =GLOBAL
Elpeas = SaveNetworkStare(E)
E = RestoreNetworkState{Ecop }
CUT = LOCAL, E =Ejy. iteration = iteration+ 1
IF Gipq > B BREAK
CUT = GLOBAL
FORall {i, j) € CUT
yi=0yi=1
FORzllieV
5=y

RETURN {x; | i€ V'}

Figure 3: Proposed Constrained Bipartitioning Algorithms.

IESRRERBEN

@
N
@@w@@@@@@
()

{a) Centrol Flow Graph

(b} Network and Cuyt

Figure 4: Example: IDCT subroutine (part of JPEG decompress).

ing weight {delay and energy). Table 2 presents the results of bi-
partitioning for the following cases:

® £nin: unconstrained sofution for min-energy,

® Emin | Bp: delay-constrained solution for min-energy,

& Smin: unconstrained solution for min-delay,

® 8min | €57 energy-constrained solution for min-delay, and

® (€8} min: unconstrained solution for min-energy-delay.

Table 2 shows costs and weights of hardware-software biparti-
tions (HW and SW columns) found by our approach and by an
enumerative exponential-time algorithm OPT. In our example, the
energy metric varies from 6942 to 9052 and the delay metric varies
from 2803 to 3570. For case 8., | €g{c), our method generates
a non-optimal cost solution: however, the deviation from the opti-
mum cost is less than 1% (3196 vs 3187). For the other cases, our
solution cost is the same the optimal solution cost.

6. CONCLUSION

In this paper we presented methods for the hardware-software
mapping (bipartitioning) of an application control flow graph ontc a
dynamically reconfigurable system. We addressed the problems of
(1) energy-delay product minimization, (2) delay-constrained en-
ergy minimization, and (3) energy-constrained delay minimization.
We showed how to use network flow techniques to solve these prob-
lerns. We proposed an efficient bipartitioning algorithm that finds
an optimal solution for problem (1) and systematically searches for
the best in 2 polynomially bounded set of good sclutions for prob-
lems (2) and (3). Note that our problem formulation is not specific
to energies and delays: costs and weights can be other design pa-
rameters.

7. APPENDIX
{A) See Theorem 1.

PROOF. A cutin & partitions the node set V into two sets § and
T. Since V ¢ V, the cut identifies a bipartition of nedes in G. Next,
we show that the cut capacities in G are equal to the cost and the
weight of a bipartitionin G: (1) Cr = F and (2)Cs =G.

By construction of G{V,E), i € V & {{s,i),(i,t)} € Sy and
(i, /) € E & {(i, /},(/,i)} € Sg. Since Sy USg = £ and Sy NS =0,

149

Case Cost Weight Budget
Qur OPT § Qur OPT
[6942 5942 | 3570 3570 B
£in 1 Op(2) | 7764 7764 | 3196 3106 | 3569
E,u | 05(0) | 7803 7803 | 3187 3187 | 3195
€, | D5(C} | SO0 8604 | 2803 2803 | 3186
B) 0800} | 0092 Q057 | 2502 2502 | 2602
2802 2802 | 9052 9052 B
B,in | E5(a) | 2803 3803 | 8604 8604 | 9051
Boin | E6LD) | 3187 3187 | 7804 7803 | 8603
in | EB(C) | 3106 7187 | 1765 7803 | 7603
Brun | EBLGY | 3196 3196 | 77165 1964 | 7802
i | £51€) | 3106 3196 | 7764 7a6d | Ti6h
S | €810 | 3570 3570 [69426942 | 7763
{5 i 6940747 9407142 | - -
l Case Our Solution OPT Solution J
SW HW | sw HW
s BD....,B9 -1 BO,.H9 -
%o] 0812) | BU.B1,B2.B4,.,59 EZ | B0,B1 BLB4,. B9 B3
€ | O5ib) | B2, _BY BO.B1 | BL..B9 B0,B1
Eorir | O5(C) | B4,...B9 BO.. B3 | B4,..BY B0,..B3
Eoun | O(d) | - B0...BY9 | - B0...B9
e - B0...B9 | - B0,....B9
e | €513) | BAn...BO BD....B3 | B#...B9 BO....B3
Tin 1 65(0) | B3,..BY B0,B1.82 | BZ,..BY BO.B1
e | £61C} | BU.B1.BZ B2.B3 | B2, B9 BO.BI
Boun | £5(0) | BOB1,BA...BY B2.83 | BO,E],B3,84...,80 B3
i | E5(2) | BO.BLBZ, B3 | BO.B|,B2,B4,...80 B3
Owin | £8(D) | BO,...BY - | BO,..BY -
& B4,..B9 B0,..B3 | B4...B0 B0,...B3

Table 2: Generated Bipartitions of IDCT.

the sets Sy and Sg form 2 partition of the set E. Therefore,
in equations (4) the sum E(, ek €an be written as the sum of
2{(: 0a)yesy 04 B p iess-

{1} First, we prove that Cr = F. The cut capacity Cr can be
represented as follows:

Cr = Tisainyese Foner(s,ih+Fmér(i,n]+
Gatintess Fvierli N+ Fier (il

We can substitute the first sum by ¥,y and the second sum by
Z(i.jee- Cbviously, ys = 0and y, = 1. Thus,

Lr=Y (s, +Fer(in] + 3 [Sj€eti) +3pmicr(f1)]-
i€y {i,.J}eE

5}

(6}
After expressing edge capacities in terms of costs, we obtain:
ZiGV YiEF(-‘- i) +)?iEF(i1[)] =
Tiev {u[e1(+ i peren (3,6 +Feleo (i) + (i pep oo i) },
and

T ee Foice(i N+ Fpice (i)] =
Ztij)eE {)'h‘)'j {eor {6,) —en (&,)] 35 feroli,) — coodi 7] }
(@)
Note that Tiev yi Zjpeecnlii) = Eipeeyicu(ij). and
Tiev Fi Ziner (i 8) = 2 pee ¥icoo(i,). Thus,

Cr= Ziev [ver{i)+Fico(i)] + (i jyez (el A+ Fieoo(é,)+

gayjem{i, J) ~ Foypen (6 1) +yid ki, §) -')’iijcoo(f,j)]8~
€]

Since y;i+ 7 =1,
Cr= Zigv el +FicolDt] + Zpijyee yiyen (i) ©)

+7;¥icoo(t, 1+ Fiyjeor (7, j} + Fiwicrold 1))

To complete our proof, let x; = y; for all i € V. Now the terms
of the sum 3oy become f{i), and the termns of the sum ¥ yee

become f(i, j}:
Cr=Y fli}+ Y fG.j)=F. (10

iev (iJ)eE

(2) The proof of that Cg is equal 10 the weight G of a biparti-
tion is analogous to (1). First we substitute Cr with Cg and the
cost capacities €r (1, j) with the weight capacities Z5(i, /). Then,
we substitute the node costs ep{i} and ¢) (i} with the node weights
wg{r) and w (), respectively, and the edge costs cpafi,). cg1 (i, /)
cioli, j), and en) (4, j) with the edge weights woo(i, /). woi (i,)
wiolt, j}, and wy (i, j), respectively. Finally, we substitute f{i)
with g(i) and f(i, /) with g(i, j). After these changes, all the deriva-
tions are the same as in (1), and we obtain:

Co=Y e+ ¥ glij)=6. {an

iev (L.))EE
O
(B) See Theorem 2.

PROOF. Let CUT denote the min-cut (with the cost F) in the
network with |Z..| terminal edges whose cost capacities are set to
infinity. Let CUT. denote the network min-cut (with the cost Fi}
after some terminal edge (f, f) is added to Z... Recall that the cost
of a min-cut is equal 10 the maximum flow value in the network.
Once the cost capacity of (i,)} is set 10 infinity, while the cost
capacities of the other network edges remain the same (including
those already set to infinity), it is clear that the max-flow in the new
network can only increase or remain the same. Thus, Fy > F. O

8. REFERENCES

[1] C. Cheng and T. Hu, “Maximum concurrent flows and mini-
mum cuts,” Algorithmica, vol. 8, 1992.

{2] C. Alpert and A. Kahng, “Recent directions in nelist parti-
tioning: A survey,” Integration: VLSI J., vol. 19, 1995.

[3]1 S. Hauck and G. Bomiello, “An evaluation of bipartitioning
techniques,” JEEE Trans. CAD, vol. 18, 1997.

[4] H.Liuand D. Wong, “Network flow based circuit partitioning
for time-multiplexed FPGAs,” Proc. ICCAD, 1998.

[5] R. Dick and N. Jha, “CORDS: Hardware-software co-
synthesis of reconfigurable real-time distributed erbedded
systems,” Proc. ICCAD, 1998.

[6] B. Dave, “CRUSADE: Hardware/software cosynthesis of dy-
namically reconfigurable heterogeneous real-time distributed
embedded systems.” Proc. DATE, 1999,

{71 U. Shenoy. P. Banerjee, and A. Choundhary, A system-level
synthesis algorithms with guaranteed solution quality” Prec.
DATE, 2000.

{8] M. Wan, H. Zhang, V. George, M. Benes, A. Abnous,
V. Prabhu, and J. Rabaey, “Design methodelogy of a low-
energy reconfigurable single-chip DSP system,” J. VLS Sig-
nal Processing, 2000

[9]1 S. Ogrenci, E. Bozorgzadeh, R. Kastner, and M. Sarrafzadeh,
“A super-scheduler for reconfigurable systems,” Proc. IC-
CAD, 2001,

[10] K. Chatha and R. Vemuri, “Hardware-software codesign for
dynamically reconfigurable architectures,” Proc. FPL, 1999.

[11) P. Knudsen and J. Madsen, “PACE: A dynamic programming
algorithm for hardware/software partitioning,” Proc. CODES,
1996.

[12) F Vahid, “Modifying min-cut for hardware and software
functional partitioning,” Proc. CODES, 1997.

{13} Y. Li, T. Callahan, E. Damnell. R. Ham, U. Kurkure. and
). Stockwood, “Hardware-software co-design of embedded
reconfigurabie architectures,” Proc. DAC, 2000.

[14] DIPEG Call Graph. hup:t/www.aisee.com/split/index.him,
2002.

150

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

